Sunday, June 7, 2015

How The Monopulse Comparator Has Improved Modern Radar Systems

By Elaine Guthrie


If you are interested in military or aviation technology, you see one piece of equipment mentioned time and time again. Radar (short for Radio Detection And Ranging) is a way of locating objects and telling important information such as the direction in which those objects are traveling, how far away they are from a given point and how fast the object is traveling. The monopulse comparator is an important component of modern radar systems and has done much to make these systems more reliable and accurate.

Although radar systems were initially used by the military to detect approaching aircraft and other potentially hostile objects these systems are being used in many other ways these days. Motorists are likely familiar with the guns used by police in order to detect speeding vehicles. The signal can bounce off of a vehicle and travel back to the gun in order to give the officer an idea of how quickly a particular car is traveling.

Weather forecasting also uses this type of system. It can track storm fronts, give information on where a storm is or how severe it is, and allows meteorologists to let us know important weather data. It can be used for tornadoes, hurricanes, blizzards and thunderstorms as well. Many weather broadcasts will display the results of Doppler radar as part of the broadcast so viewers can see the data for themselves.

Radar is also used in marine environments. Ships can use it to detect other vessels that may be occupying the same area of water and can also use it to determine where they are located. This is done by bouncing signals off of known reference points such as buoys or, if close enough, the shoreline as well.

All systems are made up of the same basic components. Frequencies are generated by a transmitter. There are several different types of these, some of which are more suitable for specific uses than others. The frequency is sent to an antenna by a waveguide. Then, the antenna sends out the signal. A duplexer switches the antenna over into receiving mode so the returning radio waves can be interpreted. This is done using a receiver and the operator will see the results on a display processor.

Jamming was an issue in the past but it is not as much of a problem with the modern monopulse systems that are being used. Because these systems rely on radio frequencies to detect objects, if a radio signal of the same frequency was directed at the radar system itself it tended to interfere with the signal and the system could not produce an accurate image. The monopulse system, because of the way it is set up, makes jamming much more difficult.

With modern systems, a single beam is emitted that is then split into two sections. They are directed in the same general direction but because they are positioned in slightly different ways it is possible to compare the returning signals to make sure that the results are accurate. A comparator is the device used to combine the signals into the single cohesive image that the radar operator will interpret.

There are several different types of these devices. The type that you choose will depend on exactly which kind of radar system you have set up. You can find comparators online although generally only on specialty websites that offer other radar equipment as well.




About the Author:



No comments:

Post a Comment